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RINGKASAN : Satu teknik rekabentuk dicadangkan untuk perpindahan optima dari 

keadaan mu/a dan akhir di dalam ruang tiga dimensi, di tengah medan graviti, di dalam 

ruang kosong, dan di bawah pergerakan tujahan yang tetap. Kajian ini merangkumi 

algorisma kawalan pergerakan kenderaan yang dibina me/alui Teori Gunaan Kawa/an 

Optima. Perubahan sudut serangan a(t) dan sudut golekan halaju Yv(t) dibandingkan 

dengan masa penerbangan kenderaan ditunjukkan pada nilai kecondongan yang diberi. 

Variasi nilai penambahan kos untuk karakterha/aju pada akhirpenerbangan dan lebihan 

perubahan antara jisim akhir kenderaan terbang untuk kecondongan lli .. o dan untuk 

lli = o bergantung kepada nilai kecondongan L1i di bawah kawalan optima (sudut 

serangan dan sudut ha/aju go/ekan) juga <illunjukkan. 

ABSTRACT : A design technique is suggested for the flying vehicle optimal transfer 

from the initial to a final state in three-dimensional space, in the central gravitation field, 

in empty space and under the action of fixed thrust. The given study considers the 

flying vehicle motion control algorithm built proceeding from the optimal control applied 

theory. The changes of the angle of attack a(t) and velocity roll angle yv(t) versus the 

flying vehicle flight time are presented for the given inclination value. A value variation 

of additional costs of the characteristic velocity at the end of flight and a residue change 

between the flying vehicle final mass for inclination lli .. o and for lli = o depending on 

inclination value ru under optimal control (the angle of attack and velocity roll angle) 

are also shown. 

KEYWORDS : Three-dimensional motion, optimal control, flying vehicle, equations of 

flying vehicle motion, angle of attack, velocity roll angle 
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INTRODUCTION 

Nesterov (2009) suggested a design procedure for the flying vehicle (FV) optimal transfer 

from the initial to a final state in one plane, in the central gravitation field, in empty space and 

under the action of fixed thrust. FV control is performed by the angle of attack. In a given 

study, a design procedure for the FV optimal transfer from the initial to a final state in three­

dimensional space is proposed. FV control is performed by the angle of attack and velocity 

roll angle. 

METHODOLOGY 

The present study considers the design technique of the flying vehicle (FV) optimal transfer 

under the action of constant thrust exceeding the Newtonian force, from initial to final state, 

characterized by prescribed values of FV radius-vector relative to the attracting centre, velocity, 

angle of inclination of the velocity vector to a local horizon and trajectory inclination. 

The following assumptions were made: 

(i) the Earth is of a spherical shape and during the transfer phase it does not rotate, 

(ii) its gravity field is central, 

(iii) the FV flight runs at high altitudes where air resistance is negligible and 

(iv) the FV control system is inertialess. 

The algorithm analysis of FV optimal transfer trajectory is built based on the applied theory 

of optimal control (Bryson & Ho, 1969), (Nesterov, 2009). 

The equations of FV motion in its centric rectangular vertical-wind-body coordinate system 

are used according to Gorbatenko et al. (1969) 

. 
x = ](x,ii,t). (7 equations) (1) 
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where x = (V ,0, 'l'v, R,q,,'Ji: ,m)T is the FV current state vector,f(x,u-,t) is the vector of the right 

sides of the system of differential equations of vehicle's motion, t is the current time of the 

flight, Vis the vehicle's velocity, 0 is the velocity vector angle of inclination to a local horizon, 

'l'v is the velocity heading angle, R is the value of FV radius-vector relative to the attracting 

centre, q> is the geocentric latitude, 'Ji: is the geocentric longitude, m is the FV mass, P is the 
R 2 

FV thrust value, g0 is the free-fall acceleration value on Earth's surface, g = g0 ( R0
) is the 

. 
free-fall acceleration value at vehicle's attitude, R0 is the Earth's radius, m• is the absolute 

value of FV mass flow, a is the angle of attack and Yv is the velocity roll angle. 

For parameters of FV motion control we use the angle of attack and the velocity roll angle: 

u(t) = ( a(t), Yv<tW. (3) 

The FV initial state vector is prescribed: 

x (t.). (7 initial conditions). (4) 
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The FV terminal state is confined as 

(5) 

where t r is the current time at the end of flight, 

where '1'1 = V- Ve - by the velocity vector value at the end of transfer leg, '1'2 = 0- er - by the value 

of inclination angle of velocity vector to a local horizon at the end of the transfer leg, '1'3 = R - Rr -

by FV radius-vector value relative to the attracting centre at the end of the transfer leg,'1'4= i- i r­

by the inclination value i . 

The negative final mass is the FV performance criterion: 

- m(tr) . (6) 

So, the task is to define such a control u (t) , which could provide the minimum of negative 

value of final mass [- m(tr )] with available differential constraints (1) and limitations to a 

terminal state (5). The Hamiltonian H (Bryson & Ho, 1969) for this task can be written as: 

(7) 

-
where 11. = (11.1 , \ , \ , 11.4 , \, \ , \ Y - the Lagrangian multiplier vector (function interference 

vector upon the functional). 

The Euler- Lagrange set of equations looks like: 

cJH =0, 
ou 

Terminal conditions give us the equalities: 
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(11) 

,.; - - (dct>j OtX,U, v,t],=tf = - = 0, 
dt 1=1r (1 condition) (12) 

Time of transfer ending tr is determined implicitly by means of terminal boundary conditions 

(10). 

From equations (7) and (8), we can write down: 

oT __ -:;T]J_ 
x - 11,(fx · (13) 

Thus, it is required to find a solution of the system of 14 differential equations (1) (set of 

equations of flying vehicle motion) and (8) (set of equations of costate variables) and determine 
5 values of unknown parameters v and tr so that to meet seven initial conditions (4) and 
twelve terminal conditions (5), (10), (12). Determination of u (t) is made using the equations 

(9): 

yVI = arctg[- x;~~se], (-1t:::;; Yv::s; 7t ), 

(14) 

Yvi = YVI + 7t. 

For each value Yv we determine two values of the angle of attack: 

l sin Yv 
a 1 = arctg[~ V (A:iCOS Yv-11,3--8 )], 

11,1 cos 
(15) 

A 
According to Bryson & Ho (1969), the time optimal control u should minimize H (u): 

A A- -

H(i,u,A,t)::s; H (x,u,A,t) . 

Solution of the equations (1) - (12) can be reduced to a solution of nine-parametric boundary­
value equations (Smirnov & Nesterov, 1980) which is reduced to a finding of roots of a set of 

equations: 

V0 = V(ic),00 = 0(ic);1Jfvo= 'lf/K"),R0= R(ic),<f>o = <p(K), 
A.10= A'(ic), m0= m(ic), i'= i(ic),08 = Q(ic), 
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where ic = ( tf' v., v2 , 'l'vf, v3 , <pf' 'A.'f' mf' v4 ) is a vector of unknown parameters. (17) 

Here: V0 ,00 ,'l'vo ,R0 ,'A,'0 , m0 are given values of FV parameters to the time, t0 • They must be 

found when solving a boundary-value problem; i',Q are given values of inclination and g 

parameter Q (from condition (12)). 

Integration of the system of differential equations (1) and (13) are performed with a negative 

step until the time t 0 , then we find the discrepancies by conditions (16). Solution of the boundary­

value problem runs until the conditions (16) be met with a given accuracy. To solve the boundary­

value problem we make use of the Newton method for solution of the system of nonlinear 

equations. In the case that we know well enough the initial approximations of Lagrangian 

multiplier vector "X(t0 ), the solution of the problem (1)-(12) can be reduced to a finding of five 

roots of a set of equations: 

0r= 0(cr), Rr = R(cr),i' = i(cr),O = i\v/cr),Q.8 = Q(cr), (18) 

(19) 

Here, er , Rf' i' are given values of FV parameters to the time moment tr and inclinations to 

be performed in consequence of boundary-value problem solving, Q& is obtained from (12), 

i\v4 is obtained from (10). 

When taking into account that in (10) \(tr)= v4 i'., ,\(t;) = v4 ~i , 
V'j' V <p 

'A.itr) 'A.s(tr) 
we get i\v = . 

4 (difd'lfv) (di/d<p) 

In this case, integration of the system of differential equations (1) and (13) are performed 

with a positive step from the time, t O until the fulfilment of prescribed condition by velocity at 

the end of transfer V = V r• and then we determine the residuals by conditions in (18). V = V r 

is the sixth condition in addition to condition (18), hence we solve a six-parametric boundary­

value problem. 

RESULTS 

The given study considers the FV motion control algorithms built proceeding from the optimal­

control applied theory. FV control is performed by angle of attack and velocity roll angle. 
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Figure 1. The angle of auack and velocity roll angle variation 

Figure 1 illustrates the changes of the angle of attack a(t) and velocity roll angle 
yy(t) depending on the FV flight time for Iii = 25° . 
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Figure 2. Value of variation of additional costs of the characteristic velocity at the end of flight 
showing the dependence on the inclination value f!...i under optimal control 
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Figure 2 illustrates a value variation of additional costs of the characteristic velocity at 

the end of flight (AVx1 = Vx1 (Ai)-Vx1 (Ai= 0)) and a residue change 

(L\mr = mr (L\i) - m/L\i = 0 )) between the FV final mass for inclination Ai _. 0 and for 

Ai = 0 depending on the inclination value Ai under optimal control (the angle of attack 

and velocity roll angle). 

CONCLUSION 

Thus, in this investigation a design procedure was suggested and realized in the software 

modules using the Fortran-IV algorithmic language for the flying vehicle optimal transfer 

from the initial to a final state in three-dimensional space, in the central gravitation field, in 

empty space and under the action of fixed thrust. This investigation reveals the changes of 

the angle of attack a(t) and velocity roll angle yy(t) versus the flying vehicle flight time which 

are presented for the given inclination value. A value variation of additional costs of the 

characteristic velocity at the end of flight and a residue change between the flying vehicle 

final mass for inclination Ai ,. O and for Ai = O depending on inclination value Ai under 

optimal control are also shown. 
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